这是四则或许对你有帮助的讯息

1、👉 最近我发现了一个每日都会推送最新校招资讯的《校招日程》文档,其中包括往届补录应届实习校招信息,比如各种大厂、国企、银行、事业编等信息都会定期更新,帮忙扩散一下。

2、😍 免费分享阿秀个人学习计算机以来的收集到的免费资源,点此白嫖

3、🚀如果你想在校招中顺利拿到更好的offer,阿秀建议你多看看前人踩过的坑留下的经验,事实上你现在遇到的大多数问题你的学长学姐师兄师姐基本都已经遇到过了。

4、🔥 欢迎准备计算机校招的小伙伴加入我的学习圈子,一个人踽踽独行真的不如一群人报团取暖,过去22届和23届的小伙伴好好跟着走下去的,最后基本都拿到了不错的offer!如果你需要《阿秀的学习笔记》网站中📚︎校招八股文相关知识点的PDF版本的话,可以点此下载

# 122. 买卖股票的最佳时机 II

力扣原题链接(点我直达) (opens new window)

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

**注意:**你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
     随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
1
2
3
4

示例 2:

输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
     注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
     因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
1
2
3
4
5

示例 3:

输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
1
2
3

# 第一版,挺有道理的

执行用时 :8 ms, 在所有 cpp 提交中击败了80.22%的用户

内存消耗 :9.5 MB, 在所有 cpp 提交中击败了27.00%的用户

[7, 1, 5, 6] 第二天买入,第四天卖出,收益最大(6-1),所以一般人可能会想,怎么判断不是第三天就卖出了呢? 这里就把问题复杂化了,根据题目的意思,当天卖出以后,当天还可以买入,所以其实可以第三天卖出,第三天买入,第四天又卖出((5-1)+ (6-5) === 6 - 1)。所以算法可以直接简化为只要今天比昨天大,就卖出。

只要今天价格小于明天价格就在今天买入然后明天卖出,时间复杂度O(n)

if (prices.size() == 0) return 0;
int temp = prices[0], sum = 0;
for (auto& a : prices) {

	if (a > temp) {
		sum += a - temp;
		temp = a;
	}
	else
		temp = a;
}
return sum;
1
2
3
4
5
6
7
8
9
10
11
12

# 第二版 动态规划,看的解法

DP动态规划,第i天只有两种状态,不持有或持有股票,当天不持有股票的状态可能来自昨天卖出或者昨天也不持有,同理,当天持有股票的状态可能来自昨天买入或者昨天也持有中,取最后一天的不持有股票状态就是问题的解

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        if not prices:
            return 0
        n = len(prices)
        dp = [[0]*2 for _ in range(n)]
        # dp[i][0]表示第i天不持有股票, dp[i][1]表示第i天持有股票
        dp[0][0], dp[0][1] = 0, - prices[0]
        for i in range(1, n):
            dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
            dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
        return dp[n-1][0]
1
2
3
4
5
6
7
8
9
10
11
12

# 第三版 DP,自己写的

执行用时 :8 ms, 在所有 cpp 提交中击败了80.18%的用户

内存消耗 :9.8 MB, 在所有 cpp 提交中击败了5.21%的用户

int maxProfit(vector<int>& prices) {

	if (prices.size() == 0) return 0;
	int n=prices.size();
	vector<int> hold(n, 0), sold(n, 0);
	hold[0] = -prices[0];
	sold[0] = 0;
	for (int i = 1; i < n; ++i) {
		sold[i] = max(sold[i-1], hold[i-1] + prices[i]);
		hold[i] = max(hold[i-1], sold[i-1] - prices[i]);

	}

	return sold[n-1];

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17