如果你想在校招中顺利拿到更好的offer,阿秀建议你多看看前人的经验 ,比如准备 、简历 、实习 、校招总结 、offer选择 、也欢迎来一起参加秋招打卡活动 等;如果你是计算机小白,学习/转行/校招路上感到迷茫或者需要帮助,可以点此联系阿秀;免费分享阿秀个人学习计算机以来的收集到的好资源,点此白嫖;如果你需要《阿秀的学习笔记》网站中求职相关知识点的PDF版本的话,可以点此下载
# 62. 不同路径
力扣原题链接(点我直达) (opens new window)
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
**说明:**m 和 n 的值均不超过 100。
示例 1:
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右
1
2
3
4
5
6
7
2
3
4
5
6
7
示例 2:
输入: m = 7, n = 3
输出: 28
1
2
2
# 第一版本,常规解法
执行用时 :8 ms, 在所有 cpp 提交中击败了16.66%的用户
内存消耗 :8.7 MB, 在所有 cpp 提交中击败了12.43%的用户
int uniquePaths(int m, int n) {
vector<vector<int>>dp(m,vector<int>(n,0));
for (int i = 0; i < m; ++i) {
dp[i][0] = 1;
}
for (int j = 0; j < n; ++j) {
dp[0][j] = 1;
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# 第二版,改进一下速度
执行用时 :0 ms, 在所有 cpp 提交中击败了100.00%的用户
内存消耗 :8.7 MB, 在所有 cpp 提交中击败了10.72%的用户
int uniquePaths(int m, int n) {
vector<vector<int>>dp(m,vector<int>(n,0));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (i == 0 || j == 0) dp[i][j] = 1;
else
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
1
2
3
4
5
6
7
8
9
10
11
12
13
2
3
4
5
6
7
8
9
10
11
12
13
← 5. 最长回文子串 63. 不同路径 II →